Revisiting Black-Scholes Equation

نویسنده

  • D. F. Wang
چکیده

In common finance literature, Black-Scholes partial differential equation of option pricing is usually derived with no-arbitrage principle. Considering an asset market, Merton applied the Hamilton-Jacobi-Bellman techniques of his continuous-time consumption-portfolio problem, deriving general equilibrium relationships among the securities in the asset market. In special case where the interest rate is constant, he rederived the Black-Scholes partial differential equation from the general equilibrium asset market. In this work, I follow Cox-Ingersoll-Ross formulation to consider an economy which includes (1) uncertain production processes, and (2) the random technology change. Assuming a random production stochastic process of constant drift and variance, and assuming a random technology change to follow a log normal process, the equilibrium point of this economy will lead to the Black-Scholes partial differential equation for option pricing. PACS number: Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Black-Scholes equation; method of Heir-equations‎, ‎nonlinear self-adjointness and conservation laws

In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.

متن کامل

Numerical Solutions for Fractional Black-Scholes Option Pricing Equation

In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

A family of positive nonstandard numerical methods with application to Black-Scholes equation

Nonstandard finite difference schemes for the Black-Scholes partial differential equation preserving the positivity property are proposed. Computationally simple schemes are derived by using a nonlocal approximation in the reaction term of the Black-Scholes equation. Unlike the standard methods, the solutions of new proposed schemes are positive and free of the spurious oscillations.

متن کامل

Barrier options pricing of fractional version of the Black-Scholes ‎model‎

In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998